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TASK SOLVING ORGANIZATION OF THE INVERSE
THERMOELASTICITY PROBLEM FOR A RECTANGULAR
PLATES

The approach for solving the inverse problem of thermoelasticity, based on the method of
the functions of influence, is proposed. The use of the functions of influence makes it possible
to represent the temperature and the thermal voltage depending on the same desired vector. The
numerical results of the identification of the thermal load measured with the error of thermal
stress, which is characterized by a random quantity distributed under the normal law. The ap-
proach considered in this article is adapted to the problems of determining the non-stationary
temperature and thermo-stressed states of isotropic two-layer hollow long cylinders and balls in
the absence of information on the thermal load on one of the boundary surfaces. Under the well-
known behavior in time of temperature and radial displacements of another boundary surface
on the basis of the proposed method, problems are formulated, which are reduced to the inverse
thermoelasticity problems, which are described by the Volterr integral equations of the first kind
of convolution. Thermoelastic deformations have been discussed and illustrated numerically
with the help of temperature and determined. The study of the kernels of the obtained integral
equations for the considered bodies showed that they are additionally defined, monotonically
increasing and have a root feature in the interval, i.e., they are Abel type integral equation.
The functional spaces, for which the problems are well-posed, have been found. According to
the results, obtained analytically, we can conclude, that the conditions for agreeing the values
of the initial temperature, given radial displacements and pressures inside and outside the system
at the initial moment of time are fulfilled. The basis of the model is the parametrization of a direct
problem of nonlinear theory thin-walled elements using the boundary elements method ¢ and the variational
Jormulation of the identification problem, which provides for minimization of the residual functional reflecting
the deviation of stress-strain state parameters obtained as a result of observationfrom those calculated on the

basis of an approximate solution.

Keywords: inverse problem, thermal stress, functions of influence, spline, identification,

regularization, functional.

1. Introduction

Experimental determination of quantities,
which are included in mathematical models of
thermal processes, in view of their complexity
and imperfection often cannot serve as an
exhaustive source of information on the conditions
of unambiguousness. Lately in connection
with this great attention is paid to the solution
of inverse problems of thermal conductivity
and thermoelasticity, in which according to
the available (very limited) information about
temperature voltages inside the body it is possible to
determine thermophysical properties and geometric
characteristics of the object. Also it is possible
to identify the initial and boundary conditions,
as well as clarify the mathematical model of the
phenomenon itself. Such tasks can arise in remote

© Povgorodny V.O., Budanova O.S., 2018

measurements, under non destructive control of
the state of structures, when studying thermal
effects on descent spacecraft, in determining the
thermophysical properties of new materials, etc.

Effectiveness of the decisions when designing
various industrial equipment depends both on
the depth and reliability of the knowledge of
the phenomena of heat transfer, and from the
adequacy of modeling thermophysical processes.
The basis of the simulation methods, diagnostics
and identification of processes Heat transfer can
be made by solving inverse problems of thermal
conductivity and thermoelasticity. In some cases,
the methods for solving inverse problems are
practically the only way to obtain the necessary
information about the object under study.

The purpose of solving inverse problems of
thermoelasticity (IPTE) may be, for example,
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an estimation of the temperature field according
to the measurement of the thermal stress inside
the body.

The methods for solving inverse problems make
it possible to carry out research in the conditions
that are as close as possible to full-scale, or directly
during the exploitation of objects, which allows
them to be more reasonably designed [1-3].

2. Statement of the problem

The plane stressed state is considered. The flat
theory of elasticity is applied to the problem of
analysis of thin rectangular plates, on which the
load in the plane acts. Consider a thin elastic body,
the thickness of which is very small in comparison
with two other dimensions. The load is caused
by mass forces b,, b, and marginal stresses o,,
oy Typically, it is assumed that the voltages are
symmetrically distributed relatively to the average
body plane, although more often the change in A
thickness is considered constant. In this case, the
final value of mechanical distress is not independent
of z, but if the thickness of # is very small and it is
assumed with sufficient degree of accuracy that

6, =01y, =0,7, =0

h then the remaining voltage components do not
depend on the variable z, i.e.

Gx =0Ox (X> Y)» Gy = Gy (X> y)» TXy = Txy (X’ Y)

Thus, the defining equations have the form:

1 1 2(1+v
€y :E(GX -VG ).y :E(Gy ~VO ).V xy =%1Xy. (D

The equilibrium equations are reduced to two,
as in the case of flat deformation,

ot ot oo
Dn T =029 DY 4, —0 ()
x oy ox

All equations for aplane stressed state can be
obtained from the corresponding equations of plane

deformation, if we use the actual elastic u and E.

Thus, we have: elastic steels

_ E * vE
2(1+v)’

h=G - 3)

_l—v

* . . .
where A — is a Lame constant; defining
equations
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Navier equilibrium equation
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Initial stresses caused by temperature changes
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3. Methods
The thermoelastic bend of the hinged supported
plates is considered. Thin plate deflection w(x,y),

which occupies two-dimensional area Q in the plane
Xy , satisfies the equation [4]

Viw =

B

r
D

3
where _Eh
plate; 12(1-v?)

v — Poisson coefficient;
h — constant plate thickness;

D= — bending stiffness of the

f =f(x,y) — distributed transverse load and
2
2 2 4 4 4
v4 = v2y2 :£8_2+a_2J :8_4+2%+6_4
ox“~ oy ox ox“oy” oy
— biharmonic operator.

Bending and torque points are given by
expressions
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For the case of ahinged plate, the deflection
must satisfy the following BC on the edge of the
plate I

(10)

where M, — bending moment in the direction »
that is normal to the limit, 7 denotes tangent to the
direction of the boundary.

Note that for the curvilinear limit
*w _&’w | ow
——=—>+k—,

on

az 652 (1

where k =k(s) — curvature of the boundary.When
the boundary of the hinged plate consists of straight
lines, we have the following expressions

2
k=0w=0_02W o
85 652

In this case, from the equation (11) we have
*w
at2

but from the second equation (10)

:0’

o*w
on?
So, based on the above two equations, the

deflection must satisfy the following equation at
the boundary of the plate:

?w *w  *w  *w
:8n2+8t2 :8x2+8y2 =0
on the border 7.

From equation (11) it follows that for points
inside the domain Q

=0.

V2w

M, +M, = -D(1+v)V2w.

So, considering
M, +M
M=——2

1+v

=-DV?w (12)

one can rewrite the equation (12) in the form

V2 (-DV?w) = —f.
This equation can be divided into two potential
equations:

VzM:—f;
02 M (13)
o

From equation (13) it follows that the boundary

of the plate M=0. Therefore, the solution of
equation (13) for a hinged plate with a polygonal
boundary can be obtained from two following
Dirichlet problems:

VM =—-fin Q
M=0on I’

w=0 on [I.

The solution of the equation of thermoelastic
plate bending by dividing it into two potential
equations belongs to Marcus [5,6]. Its use is limited,
as this solution can only be applied to hinged-
plate with polygonal boundary. The solution of the
problem of deflection of a plate in the general case
can be obtained by the variant MBC, developed for
the biharmonic operator [7-9].

To solve equations (10) and (11) using MBC it
is necessary to find integrals in the region

[ufdQ 5 [oMdQ
Q Q

where v — the fundamental solution of the Laplace
equation.

4. Results

A hinged square plate under the action of
uniform loading; a square plate that is touched by
the contour and is under the action of a uniform
load; a square plate with a cutout; rectangular plate
of two areas; a square composed plate have been
considered and the calculation of folded plates was
performed.

The hinged square plate has the following
parameters:

a=0,2m;h =0,001m;E =2-10'%Pa;v =0,3.

The feasibility is to compare the solution
obtained with the method of boundary elements
(MBC) in conjunction with the variational method
and the solution that can be considered accurate.
A tendency was found as to the convergence of the
solution, depending on the number of boundary
elements (BC) and the order of approximation
on these elements. Elements had equal length.
Convergence is improved with increasing the order
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of approximation. It was found that given the size
of the matrix of aseparate system S, polynomial
approximation is preferred.

y

Fig. 1. Hinged square plate

A polynomial approximation was used on
large fragment boundaries. Geometric boundary
conditions (BC) are satisfied according to the
scheme of the mean-square approximation. The
temperature is defined by means of solution IPTE
using the MBC.

Next, a square plate, which was clamped on the
contour under the action of a uniform load, was
considered. (Fig. 2).

y

Fig. 2. Square plate that is pinched in the contour under the
action of auniform load
The plate has the following parameters, as in
the previous case:

a=0,2m;h =0,001m;E =2-10'""Pa;v =0,3.
The results are presented in Fig.3.
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Fig. 3. Temperature distribution, depending on the number
of boundary elements
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This example is interesting because the solution
is given at some points. Also, you can compare the
results for the classical approximation scheme MBC
and schemes of polynomial approximation on large
fragment boundaries. Moreover, in the second case,
for the complete solution of the problem there is
no need to use the Lagrangian functional. Also,
the temperature is defined with the help of solution
IPTE using the MBC.

A square plate with acutout is also considered
(Fig. 4). The square hole is symmetrically placed.
The outer contour is hinged, internal - free. The
plate is evenly loaded. The parameters of the plate
are the same as in other objects:

a=0,2m;h =0,001m;E =2-10'"Pa;v = 0,3.
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Fig. 4. Square plate with a cutout

In this case, the solution is obtained as in
conjunction MBC with avariational approach, and
in the version of the classical approach MBC.In

the first case, 8 boundary fragments (L =8) and
6 — in the second case. Both approximations give
similar results. With an increase L the results are
practically unchanged, and for large ones L there
are problems due to the great order of the system.
In the second case, the contour is divided into 48
BC with quadratic approximation of compensating
loads. On the free edge the contour in the areaof
the corner points are not fixed. There is a good
match for the results with these approaches. The
temperature is based on the solution IPTE using
the MBC.

Also, a square composite plate was considered.
The plate is evenly loaded. The coupling is
performed on two sections. The parameters of the
plate:

a=0,2m:h=0,001m;E =2-10'%Pa;v =0,3.

As an initial reference point in this problem,
the solution for asingle square plate is given,
which with an error of less than 1% coincides
with aknown solution. Then the results for that
plate are shown, but made up of two sub-areas of
the same rigidity. The following are variants when
changing the thickness of the second sub-area.The
temperature is based on the solution IPTE using
the MBC.
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Fig. 5. Square composite plate

Also, arectangular plate, consisting of two
subareas, was considered. The coupling can be of
elastic or hinge type.Parameters of the plate:

a=0,2m:h =0,001m;E =2-10'%Pa;v =0,3.

This test allows you to evaluate the quality of
the calculations.
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Fig. 6. Rectangular plate consisting of two areas
5. Conclusions

On the basis of algorithmic language FORTRAN
a program for numerical calculations is developed.
The first and easiest option is based on splitting
the contour of the border by a broken line. Sections
of this line are associated with BE. Within BE the
approximation of compensating loads seems to be
piecewise linear. With these provisions, the testing
of programs with simple areas for which there are
known solutions was performed. In addition, at
this stage, mechanical BC could be realized hinged
stop and pinching. When solving a test task with a
circular plate, which was pinched in the contour, it
was noted the difference of 10-12% by the value of
the contour bending moment in comparison with
the analytical solution. This error in the value of

the contour bending moment is a consequence of
replacing the contour line with a broken line. That
is, it is important to take into account the curvature
of the contour and, if in the quality BE are presented
not straight, but corresponding arcs, the numerical
solution practically coincides with the analytic. The
next important point is the rate of convergence of
the solution, depending on the quantity BE. Of
course, the accuracy of the results obtained depends
on the given accuracy of the calculation, as well
as from the definition of compensating loads. It
is determined that within the framework of the
piecewise linear approximation, the accuracy of
the solution depends directly on the increase in
the number BE. The practical reception here is to
partition the boundaries of a certain number of
identical BE. For example, in a rectangular plate,
each side is divided into a number of equal lengths
BE. The accuracy of the solution at internal points
is increasing rapidly with increasing the number
of such BE. But when approaching the contour
point, the rate of convergence of the solution slows
down. This indicates that it is necessary to improve
the quality of the approximation of compensating
loads. With an increase in the number BE the
quality situation in satisfaction should improve
BC because the number of points of collocations is
increased. But the increase in the number of points
of collocation leads to an increase in the order of
the system of linear equations and, accordingly,
increases the rounding errors in its solution.

Test tasks confirm that starting from acertain
point, the solution in the internal points gets worse,
further increase in quantity BE becomes meaningless.
Partial improving the solution can be due to uneven
distribution BE on the contour (boundaries).For
example, for rectangular plates, the quality of the
solution improves with arelative decrease in length
BE to the corner points. But similar studies are
done to optimize both quantity and length BE are
possible only for tasks with known solutions and
they are quite laborious.Thus, the main issue when
conducting numerical calculations is to develop
certain criteriafor the quality of the results. It is
noted that the more accurately completed BCare,
the more precise the solution is. At the points of
collocation BC are performed exactly.

[locmynuna 6 pedaxuyuro 01.07.2018

B.O. ITosropomnmii, O.C. Bynanosa. Opranuzanus penieHust 00paTHBIX 32124 TEPMOYIPYTOCTH

JJIA NPAMOYTOJIBHBIX IUIACTHH

Hoeble obpamubie 3a0auu mepmoynpyeocmu 04s APAMOY2OAbHbIX NAACMUH OblaU CHOpMY-
AUPOBAHBL U NPUMEHSAIOMCS NPU NPOEKMUPOBAHUU YCMPOIICIE A3IPOKOCMUYECKOl mexHuKu. B
omux 3a0auax Heu3eecmHas Menno8as Haepy3ka (memnepamypa epaHuvyHou HO8epPXHOCMU U
UHMEHCUBHOCINb MENA06020 NOMOKA) Oblaa onpedeseHa ¢ UCHOAb308AHUEM OAHHbIX GePMUKANb-
H020 cMeujeHust 0OHOU U3 BHeWHUX ePaHUYHbIX nogepxHocmei. QYHKUUOHANbHbIe NPOCMPAHCMEdA,
04151 Komopbix 0b6pamHubie 3a0ayu KoppeKxmuol,0viau Haiidenst. Cnocob peuleHus oopamusix 3ada4,
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0ObL1 NPednodicer U NPoseper ¢ UCNOAb308AHUEM MHO2OKPAMHO20 peuleHuUs: npamoi 3adavu. Ima
cmamosi NOCAWEHA ONpedeNeHUur0 memMnepamyp Hazpesa u pacnpedeieHus: memnepamyp Ha
6epXHell NOBEPXHOCMU MOHK020 Koabya. Boipajcenus memnepamyp Hazpeea u pacnpedenenus
memnepamyp Obiau noAyHeHbl 8 gude paoa, ékatouas QyHkyuu becceas ¢ nomouwpto unmeepans-
Hoeo npeobpaszoeanus. Tepmoynpyeue deghopmayuu 6viau 00CyicOeHbl U NPOUAIIOCMPUPOBAHDL
YUCACHHO C NOMOWBIO YUCACHHBIX MemO00d08 onpedeserus memnepamyp.

Karueevie caosa: oopamnas 3adaua, obpamuas nepexoOHas QYHKUUS, MepMOynpyeas
dechopmauyus, NPAMOY20AbHASL NAACMUHA.

B.O. Ilosropoaniii, O.C. Bynanoa. Opranizanisa BuHpimeHnHs oOepHeHHX 3amad
TEPMONPYKHOCTI /I NPAMOKYTHHX IJIACTHH

Hoei ob6epHeni 3adaui mepmonpyscnocmi 0451 NPAMOKYMHUX RAACHMUH OYAU CHOPMYAbOBAHI
ma 8UKOPUCMOBYIOMbC NPU NPOCKMYBAHHI NPUCMPOie aepoKocMiuHoi mexHiku. B yux 3adauax
HesidoMe mennoée HABAHMAMNCeHHs (memnepamypa epaHuyHoi NoeepxHi ma HMeHCUBHICMb
menn08020 NOMOKY) 0y10 GU3HAYEHE 3 BUKOPUCIAHHAM OQHUX 6ePMUKANbHO20 3MIUeHHs 00HIET
3 308HIWHIX epanHuvHux nosepxorv. DYHKYIOHAALHI npocmopu, 04 Kompux obepHeHi 3adayi
KopekmHi, Oyau 3HatideHi. 3aci6 euxopucmauHs obOepHeHUX 3ada4, 0ye 3aNPONOHO8AHUL Ma
nepegipeHull 3 UKOPUCMAHHAM 0a2aMOKPAMHO20 @UpiuleHHs npamoi 3adadi.

1l cmamms npucesuena 8U3HAYEHHIO MeMnepamyp Haepiey ma po3nodineHHIO memnepamyp
Ha GepxHill nosepxwi MoHK020 Kinvus. Bupascemns memnepamyp Haepigy ma po3noodineHHs.
memnepamyp 6yau odepicani y eueandi psady, epaxogyiouu yuxuyii beceas 3a donomoeoro
inmeepanvroeo nepemeopenus. Tepmonpycui depopmauii 6yau poseasHymi ma npoinlocmposaHi
YUCeAbHO 3a O0NOMO2OI HUCEAbHUX MemO00ié GU3HAYEHHS MeMnepamyp.

Karouogi caosa: obepnena 3a0aua, obeprena nepexiona QyHKUis, mepmonpyiicHa oepopmauis,

NPAMOKYMHA NAACMUHA.
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